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Abstract—Two major security threats for wireless networks are
physical jamming and virtual jamming. The inherent openness
of the wireless channels exposes the network to the physical
jamming problem. On the other hand, the virtual carrier-sensing
mechanism of IEEE 802.11 based MAC protocols opens up even
a less expensive virtual jamming problem. A malicious node can
effectively launch Denial of Service (DoS) attacks through virtual
jamming inhibiting access to a large portion of a wireless network
at the minimum expense of power resulting in significant drop
in aggregate throughput and traffic carrying capacity of the
network. The existing solution(s) can recover to some extent but
the attackers are developing new variants of attacks day-by-
day. Therefore, novel and more robust mechanisms are needed
to combat virtual jamming. In this paper, we propose a novel
machine learning based solution that can effectively classify the
malicious (i.e., jammer) and non-malicious nodes in order to
intelligently ignore any channel allocation requests made by the
jammers. Finally, by presenting rigorous simulation results we
show the efficacy of the proposed solution and its superiority
over other non machine learning based solutions.

I. INTRODUCTION

The wireless channel is broadcast in nature making it highly
vulnerable to denial of service (DoS) attacks. Malicious nodes
can launch a DoS attack by performing either a real jamming
or a virtual jamming. In real jamming, a malicious node
intentionally jams critical packets at the right moment by
producing interfering signals affecting signal-to-noise ratio
at the receiver end so that the packet gets corrupted. On
the other hand, in virtual jamming the virtual carrier-sensing
mechanism of the IEEE 802.11 MAC layer is exploited. A
malicious node (periodically) misleads other nodes forcing
them to update their Network Allocation Vectors so that the
channel is marked as busy for a long period of time. Both real
and virtual jamming drastically reduce the throughput of the
communicating nodes with a very little energy budget.

The main focus of this paper is virtual jamming and
its remedy. The collision avoidance mechanism in carrier
sense multiple access (CSMA) based MAC protocols leads
to virtual jamming problem. In CSMA, the sender-receiver
pair exchanges short Ready-To-Send (RTS) and Clear-To-Send
(CTS) packet before the actual data packets in order to reserve
the channel for the duration of the actual transmission. As
the validity of the announcement for channel reservation is
not checked, an adversary may easily exploit this mechanism
by sending spurious RTS/CTS packet(s) falsely announcing
possible reservation of the channel, but not sending any data
packet at the end during the reserved period. In this way

an adversary may devise sophisticated DoS attacks (possibly)
causing partition in the network with a very low energy budget.
By conserving energy the lifetime of the virtual jammer is also
increased and it remains a threat for a longer period of time. It
also degrades the aggregate throughput and the traffic carrying
capacity of the network.

To prevent virtual jamming, validating RTS packets through
physical carrier sensing has been proposed in the literature.
According to this method, at the beginning or at a random slot
of the announced data transmission period mentioned in the
RTS packets, the neighboring nodes perform a physical carrier
sensing of the channel to perceive whether the channel actually
goes to busy state or not. This validation refrains attackers
from generating false announcement using RTS/CTS packets.
However, there are some limitations of this RTS validation
method. First of all, although the declined throughput could
be recovered to some extent using such RTS validations, there
still remains a scope of further improvement and recover more
throughput. Secondly, the RTS validation requires physical
carrier sensing which consumes more energy.

In this paper, we propose an interesting blend of machine
learning and wireless networking to combat virtual jamming
and recover aggregate throughput to highest extent. The pro-
posed mechanism applies classification techniques to identify
malicious nodes launching virtual jamming and isolates those
from well behaving nodes to prevent DoS attacks. Moreover,
the proposed solution is backward compatible in a sense that
any intelligent node equipped with the proposed mechanism
might still carry on the communications with the nodes without
having the mechanism incorporated within them.

II. RELATED WORK

In this section, we concentrate on some endeavours that
are closely related to our work. Acharya et. al. [2] propose a
MAC protocol to enable parallel transmission in IEEE 802.11.
Although by enabling parallel transmission, the DoS attack can
be mitigated to some extent, the protocol requires a rigorous
modification of IEEE 802.11. As our approach is backward
compatible with the IEEE 802.11 protocol, we only focus on
those works that are also backward compatible and require
minimal changes in the basic IEEE 802.11 protocol.

There exists some static approaches to overcome DoS
attack. The first one in the series requires the RTS validation
which is suggested by Chen et. al. in [3]. As this approach
can not recover the usage of channel bandwidth sufficiently at
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the time of attack, another approach is suggested by Rahman
and Gburzynski in [9] which is known as Random RTS
validation. Though the later one is also a static process, it
is better than the first one approach in terms of network
performance and has the ability to combat advanced variant of
the attack. A fuzzy logic based learning algorithm for MANET
was proposed by Devi et. al. [4] based on the results from
[5]. A dynamic approach was proposed in [6], [8], [11] to
enable and disable IEEE 802.11 DCF’s RTS/CTS handshake.
In [8], a regulator function has been introduced to capture
the empirical characteristics of RTS/CTS performance. The
function depends on some tunable parameters namely packet
size, transmission rate for both data and signaling traffic, as
well as network contention. Again, a good static way to detect
vulnerable RTS packet was proposed in [7]. But that process
can not identify the invalid RTS packet until it receives the
DATA packet.

Apart from the above mentioned works, to the best of our
knowledge, no other prior work explores the technique to
prevent DoS attacks using machine learning. Unlike other
works, the proposed work extracts some features from the
network traces so that a learner can be built to differentiate
malicious nodes from non-malicious ones.

III. VIRTUAL JAMMING PROBLEM AND ITS REMEDY

As a background, we review virtual carrier sensing of 802.11
and show how it leads to false blocking and virtual jamming.

A. IEEE 802.11 Protocol: virtual carrier sensing

The virtual carrier sensing mechanism of IEEE 802.11
solves the well-known “hidden node problem” with the help
of a four-way handshake of RTS/CTS/DATA/ACK packets.
The mechanism is illustrated in Figure 1. At first the sender
initiates the handshake by sending a Request-To-Send (RTS)
broadcast packet to its neighborhood. In response, the indented
recipient replies with a Clear-To-Send (CTS) broadcast packet
in the recipient’s neighborhood this time. As both RTS and
CTS contain the duration to transmit the actual data packet,
nodes receiving those packets easily become aware of the
transmission and do not interfere with it. Finally the sender
transmits the actual data packet, and the receiver responds back
with an ACK packet if data is received correctly.

B. Problems with the virtual carrier sensing

The virtual carrier sensing mentioned above leads to false
blocking, and virtual jamming, both of which we describe next.

1) False Blocking Problem: The False Blocking occurs
when some nodes become blocked for a non-existent transmis-
sion. To understand the details consider the scenario shown
in Fig. 2. During the data exchange between A and B, all
red, yellow, and green nodes are temporarily blocked by the
RTS-CTS packets exchanged between the communicating pair
A and B. However, blue nodes, being outside the range of
both A and B, are allowed to transmit and receive. Now
if a blue node D wants to transmit to a yellow node C,
D will initiate with a RTS packet addressed to C, but C
will fail to respond with a CTS as it is blocked due to the
transmission between A and B. D will try later assuming C
is busy. But the ineffective RTS packet will make all nodes
within D‘s transmission range blocked for the entire duration
of the non-existent transmission, as announced by D. This false
blocking [10] may further propagate if some other blue node
tries to send RTS packets to any of the newly-painted green
nodes, thus hindering possible transmission.

2) Virtual Jamming Problem: False blocking opens up an
opportunity for malicious nodes to launch a DoS attack.
During this attack, the malicious node can deliberately send
short RTS packets periodically announcing long transmissions
never to occur. Hearing the RTS, some part of the network
will remain blocked and the blocking can be propagated like
false blocking. Thus a large segment of the network can be
effectively jammed using a trivially small amount of power
as RTS is a small packet. Virtual jamming is shown in Fig.
4 where A sends false RTS packets to B inserting a large
but legitimate value in the duration field. All nodes within A
and B’s transmission range (i.e., C,D,E and F) will become
blocked after receiving such a packet for the duration requested
by A and B. Once the waiting time of C,D,E and F will be
over, A will send false RTS packet again to continue the attack.

C. Solutions

As a solution of both virtual jamming and false blocking
problem RTS validation has been proposed in [10] [3].

1) RTS Validation: To prevent virtual jamming, validating
RTS packets through physical carrier sensing has been pro-
posed [3]. According to this method, at the beginning of the
announced data transmission period in the RTS packets, the
neighboring nodes perform a physical carrier sensing of the
channel to realize whether the channel actually goes to busy
state or not. If the channel is found idle other sources who are
waiting to reserve the channel for possible data transmission
are allowed to access it. On the contrary, if the channel is really
busy then it is a valid announcement and the neighboring nodes
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defer until the ongoing transmission is over.
2) Random RTS Validation: RTS validation does not work

for advanced variant of DoS attacks. If an attacker already
knows that all its neighbors will validate its transmission
request after waiting for a CTS packet transmission time, then
it can intelligently send a very small packet at the beginning
of the data transmission time to create an impression that the
channel is busy. Transmission of this small packet will force
other nodes to (falsely) assume that the transmission has taken
place and force them to remain blocked for the entire time. To
prevent the advanced attacker a process called Random RTS
Validation is proposed in [9]. In Random RTS Validation the
neighboring nodes check for transmission randomly at any part
of the data transmission period. As the validation is made at
random, the advanced attacker will be detected in most of the
cases and almost 50% of the data transmission period can be
recovered on the average. The process is illustrated in Fig. 6.

IV. PROPOSED MACHINE LEARNING BASED APPROACH

In this section we propose a novel machine learning based
approach to combat the “advanced” variant of virtual jamming.

A. Problem with RTS validation

In RTS validation, every RTS packet coming from a node
is validated by all recipients although a malicious node is
likely to repeatedly send RTCS packets with the intentions
to jam the network. Thus, an optimal approach is to classify
a node’s surrounding neighbors into malicious, and non-
malicious categories and (safely) ignore all subsequent channel
reservation requests coming from already identified malicious
node(s) without performing any RTS validations. As the RTS
validation is not performed, a significant amount of processing
time and energy can be saved. This is the basis of the proposed
machine learning based approach. However, there are many
challenges. First of all, a node needs to clearly distinguish
false blocking and virtual jamming because false blocking
is a legitimate naturally evolved phenomenon whereas vir-
tual jamming is a deliberately introduced phenomenon. The
classification task becomes more challenging in congested
environments because there could be many false blocking
mimicking similar traffic patterns of virtual jamming which
might lead to frequent mis-classifications and false positives.
If a well-behaving node is ever mis-classified as a malicious
node, all its future transmission requests will be ignored by
all its neighbors. To tackle this problem, the behaviour of all
neighboring nodes needs to be reevaluated periodically.

B. Machine learning based approach
The operation of machine learning based remedy of DoS

attack is broken into rounds. Each round starts with a learning
phase during which data values reflecting the behaviour pattern
of each node’s neighbors are collected. The learning phase
is followed by an action phase during which neighbors of
each node are classified into malicious, and non-malicious
categories. In action phase appropriate measures are taken
against the malicious nodes. The details are given below:

1) Learning phase: During this phase a node observes the
behaviour pattern of all neighbours and collects data of some
predetermined features about them. Despite being in learning
phase, the node still continues to run Random RTS Validation
to nullify the detrimental effect of false RTS packets. On the
average 50% throughput loss can be recovered in this phase.

2) Action phase: At the beginning of this phase, each node
classifies its surrounding neighbours as malicious or non-
malicious based on the selected features gathered during the
last Learning Phase, last Action Phase and latest measured
values of those selected features. Once classified, each node
ignores all subsequent RTS packets coming from the malicious
nodes for the remaining period of the phase. For non-malicious
nodes it validates their RTS packets by using Random RTS
Validation. It also observes their behaviour and collects data
values for determining their behavioural patterns. Thus, in
the action phase nearly 100% throughput can be recovered.
Usually the action phase is much longer than the learning
phase as shown in Fig. 3. After the action phase the next
round starts. The ratio of the duration of learning phase,
TL and duration of action phase, TA in a round is called
Learning to Action Ratio or LAR and can be tuned for optimal
performance. Mathematically, LAR = TL/TA.

C. Selected Features
Feature Selection is one of the core concepts in machine

learning which greatly impacts the performance of the derived
models. Different random scenarios were studied first to select
suitable features for accurate classification, Also some of the
scenarios were generated without presence of any attacker to
better understand the usual traffic pattern of the networks.
After careful study the following three features were selected.

• Moving Average of Invalid RTS packet Ratio (IRR).
• Deviation of Moving Average of IRR.
• Moving Average of Inter Arrival Time of RTS packets
To understand the effectiveness of the selected features we

generated random scenario having 25 nodes and 6 packet



Fig. 7: Effect in Moving average of IRR over Time

sources. Out of these six sources, two sources were attackers
and remaining four sources are non-malicious (i.e., regular
sources) taken at random.

1) Moving Average of IRR: An attacker node is likely to
produce a large number of false RTS packets without any data
packets to follow. On the other hand non-malicious nodes
RTS packets will be followed by data packets as those are
legitimate. Thus first feature to distinguish a non-malicious
node from attackers is to look into the proportion of invalid
RTS packets generated by a node. IRR stands for Invalid RTS
ratio which captures this feature. We call a RTS packet is
invalid if no data packet follows it. So the IRR refers to the
ratio of Invalid RTS count to the Total RTS count.

IRR =
Invalid RTS count
Total RTS count

In every round, during Learning phase and Action phase when-
ever a RTS packet is received Total RTS count is incremented
and if no data packet is sensed during Random RTS Validation
only then the Invalid RTS count is incremented. It is obvious
that for an attacker the IRR will be very high. However, the
actual value of the parameter heavily depends on the sender’s
data transmission rate and its start time. In order to nullify
these effects we calculate the moving average of IRR instead
of total counts. The moving average at a particular round is
calculated from IRRL of the Learning phase and IRRA of
the Action phase in that round. Then the new value IRRnew

(of the current round) is calculated by using IRRold of the
previous round using the following equation:

IRRnew = (1−cfL−cfA)∗IRRold+cfL∗IRRL+cfA∗IRRA

where cfL and cfA are coefficient of Learning and Action
phase used to prioritize them and act as hyperparameters. Their
value ranges between 0.0 to 1.0.

Figure 7 shows the moving Average of IRR of two senders,
one is the attacker (out of two) and the other is a non-malicious
sender (out of four). Note that, the moving average of an
attacker and a non-malicious node is clearly separable.

2) Deviation of Moving Average of IRR: When a receiver
has a mix of attackers and non-attackers in its neighbourhood,
the attacker’s moving average of IRR must have much higher
value compared to that of a non-attacker node. This is because
an attacker is likely to produce more and more deliberate

false RTS packets to launch virtual jamming attack. The non-
attacker’s false RTS packets are only due to the limitation
of the protocol (i.e., an RTS does not get any CTS from
a node if it is in the middle of an ongoing transmission).
This observation leads to pick up a second feature about a
neighboring node:– the deviation of moving average of IRR.
The deviation is calculated for each neighbouring sender at
each receivers. When a receiving node has a mix of attackers
and non-attackers, it is obvious that for an attacking neighbor
the deviation is always positive whereas for a non-malicious
sending neighbor the deviation is always negative. The value
could be either positive or negative only when a receiver has
either all attacking nodes or all non-malicious nodes in its
neighborhood. And if its value becomes positive for a non-
attacker its value will be negligibly low. Figure 8 shows the
deviation of moving Average of IRR of some attackers and
non-attackers. Figure 8a shows the deviation of an attacker
and a non-malicious sender of a receiver. Clearly the deviation
for the attacker is positive and for the non-malicious node it
is negative. Figure 8b shows the deviation of moving average
of IRR of a non-malicious sender for a scenario containing
no malicious nodes in the network. Although the deviation is
positive on different occasions, its magnitude is negligible.

3) Moving Average of Inter Arrival Time of RTS packets: A
non-malicious node sends data packets following exact rules
of the IEEE 802.11 protocol. The protocol may incur large
delays caused by other transmissions and re-transmissions
of corrupted data packets (due to the collisions and noises
of the shared channel). It also needs to wait sometime for
receiver’s ACK packets to come. According to the protocol
it also back offs before every new transmission of the RTS
packet. Therefore, the perceived average inter arrival time of
RTS packets by a receiver sent from a non-malicious node
will be very high. But an attacker is not enforced to follow
the rules of the protocol. So it does not face these delays and
consequently the average inter arrival time of RTS packets
perceived by a receiver in an attacker’s neighborhood will be
very low. Therefore the last and final feature to look at for
classification is the inter arrival time of RTS packets generated
by any sender. For every RTS packet received by a node,
the moving average of Inter Arrival Time of RTS packets is
calculated using the following equation:

IATnew = (1− cfIAT )× IATold + cfIAT × (CT − LT )

Here CT refers to the time when the new RTS packet is
received, LT refers to the time of the last RTS packet received
and cfIAT is the coefficient of the RTS arrival interval acting
as an hyperparameter. The value of cfIAT ranges between 0.0
to 1.0. Figure 9 shows the effect in moving Average of Inter
Arrival Time of RTS packets of one attacker node and one
non-malicious. The Inter Arrival Time of RTS packets of a
non-malicious node is much higher than that of an attacker.

V. DATA SET PREPARATION

We need to create a data set to feed in the machine learning
algorithm so that it can learn. In this section, we cover the data
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TABLE I: Dataset

Moving average Deviation of moving Average Is it an
of IRR average of IRR RTS Interval attacker?

0.0411155 -0.0462200 0.0550714 0
0.3691936 0.2818581 0.0039915 1
0.0458663 -0.0414691 0.0892042 0
0.0250579 -0.0622775 0.0899507 0
0.3288425 0.2734656 0.0086242 1

TABLE II: SVM coefficients

Axis name Coefficients
movingAverage 2.59804693

deviation 2.5296639
averageRTSInterval -0.36001139

bias -1.09308601

TABLE III: Conf. Matrix

Property value
True Positive 85,083
False Positive 10,081
False Negative 17,436
True Negative 351,490

collection procedure, the machine learning model being used,
the learner’s properties and learner’s result on test data set.

A. Data set Properties

At first we randomly generate some scenarios in NS-
2.Packet sending interval is 0.08s. Each packet size is of 1024
bits. For each scenario, we run the simulation for 500 seconds.
There were four Attributes in the dataset containing a total of
2, 320, 449 rows. The total dataset size was 75.4MB. Table I
shows random five rows of the data set.

B. Model selection: Support Vector Machine

As we know the data set is linearly separable, we can
feed the data set into a SVM machine for learning. Once
trained, it returns a model with vector of coefficients and a
bias. Inherently, those coefficients are the coefficients in a
hyperplane as SVM separates the data set using a hyperplane.
Next we perform a train-test splitting of the data set where
SVM learns from training set and validates on the test set. We
split the data set on a 80 : 20 ratio of training set and test
set.For learning and testing, we use scikit-learn API.

Table II shows the coefficients along with the feature axes
of the data set.

C. Learner’s effectiveness on Test Data

We activate the learner model on the test data set and the
results are quite promising. Below are some results.

1) Confusion Matrix: Table III shows the confusion matrix
on test data set. True positive and true negative values are quite
high compared to false positive and false negative values.

2) False Positive Ratio and Accuracy: The accuracy on test
data is 94%. Also the false positive rate is only 2.78%.

After cross validation, we have incorporated the trained
SVM model in NS-2 simulator [1] to capture the effectiveness
of the model. We describe the performance of the model next.

VI. EXPERIMENTAL RESULTS

We run simulation experiments using NS-2 simulator [1] to
verify the effectiveness of the built model and compare its per-
formance with other non-machine learning based approaches.

A. Performance Metrics

1) Throughput: Throughput is the rate of successful mes-
sage delivery over a communication channel. The goal of every
communication channel is to maximize the throughput. We
measure both instantaneous throughput which is measured
over a short time period and the average throughput which
is measured over a long time period.

2) Delay: The delay of a network is the time taken by a bit
of data to travel across the network from one node to another.
Both instantaneous delay and average delay were calculated
to evaluate built model’s performance. Instantaneous delay is
the delay of measured over a short period of time. On the other
hand average delay is measured over full simulation time.

B. Simulation Environment

We run the simulation on the topology shown in Figure 10.
Exactly same scenario was used in to generate the results
presented in [2] [9] The deployment area is 625 × 625 sq
unit where eight nodes are carefully deployed. Green nodes
are non-malicious sender and only attacker is the red node.
Inner four nodes 1, 2, 3 and 4 form a clique. The outer ring
contains four other nodes 5,6,7, and 8. The nodes in outer
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ring are connected to exactly one node in the inner ring.
The communication pairs are 2 −→ 6, 3 −→ 7, 4 −→ 8 and
1 −→ 5. The transmission range is 250 units. Packet size is
1024 bit. A sender is allowed to send a maximum of 10, 000
packets. The channel bandwidth is set to 1 Mbps. Interval
time between consecutive packets is 0.04s that boils down to
a sending rate of 25 packets per second. The attacker sends the
false RTS packets at the same rate. We run the simulation for
500 seconds. Both machine learning based approach and the
random RTS validation approach were run on this scenario.

C. Performance comparison of different approaches

1) Throughput comparison: At first we run the simulation
without any virtual jamming by turning off the 1 −→ 5
communication. The other three communication pairs 2 −→ 6,
3 −→ 7, 4 −→ 8 were still actively sending packets with an
interval of 0.04 seconds. The aggregate average throughput
was found to be 593.643 kbps. Then we perform the advanced
variant of virtual jamming attack by turning on the malicious
node 1 initiating communication between 1 −→ 5 at 200th
second of simulation and continue it for another 100 seconds.
Consequently the RTS receiver node 5 becomes blocked
during the attack. As the inner nodes 1, 2, 3, and 4 forms a
clique node 1’s virtual jamming affects other three commu-
nications. Hence both instantaneous and aggregate throughput
during the jamming interval decreased by a noticeable amount.
The average aggregate throughput while jamming dropped to
580.998 kbps from 593.643 kbps.

Next, to overcome the virtual jamming at first we applied
the existing Random RTS validation method and was able to
bring back the average throughput up to 588.418 kbps.

Next, we applied the proposed machine learning based
approach in place of Random RTS validation method; the
average throughput became higher producing a throughput of
590.534 kbps. Clearly machine learning approach outperforms
the Random RTS validation approach. Figure 11 compares
instantaneous throughput of both approaches and shows how
much improvement can be made on throughput.

2) Delay comparison: Finally we plot the instantaneous
delay curves for normal scenario (without any attack), virtual
jamming scenario (without any measures taken against the
attack), with random RTS validation and with the proposed

machine learning based approach. Both the random RTS
validation approach and the machine learning based approach
were able to significantly reduce the delay (roughly between
10 to 15%), the machine learning approach outperforming the
random RTS validation.

VII. CONCLUSIONS AND FUTURE WORKS

In wireless networks, virtual jamming can be used for
launching DoS attacks to significantly waste valuable channel
bandwidth, decrease average throughput and increase delay.
We propose a machine learning based approach that runs in
rounds—each round consisting of a learning phase followed
by an action phase. It collects data during learning phase
and effectively use them during the action phase to classify
neighbors into malicious and non-malicious category. Once
successfully classified, the proposed method ignores any chan-
nel reservation requests coming from the malicious nodes. The
experimental results shows that the proposed system is capable
of nullifying the effect of DoS attack and substantially increase
the average throughput and decrease the delay.

In future, the Learning to Action Ratio (LAR) and other
hyper-parameters can be tuned for optimum performance.
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